Reaction of amidrazones with 1,4-diphenylbut-2-yne-1,4-dione
 Ahmed M. Nour El-Din and Ashraf A. Aly*
 Chemistry Department, Faculty of Science, El-Minia University, 61519-El-Minia, Egypt

Various (2Z)-2-(\{(E)[arylamino]phenylmethylene\}hydrazono)-1,4-diphenylbutan-1,4-diones are obtained during the reaction of amidrazones with 1,4-diphenylbut-2-yne-1,4-dione (DBD) in boiling ethanol.

Keywords: amidrazones, 1,4-diphenylbut-2-yne-1,4-dione, imine formation

The chemistry of 1,4-diphenylbut-2-yne-1,4-dione (DBD) has been extensively investigated. For example, DBD reacts with benzimidazole-2-thione to produce 2-(acylvinylthio) benzimidazoles, ${ }^{1}$ whilst diarylazines react with DBD to produce pyridazines via a Diels-Alder reaction. ${ }^{2}$ An effective route to the pyrrol-2-ones involves the reaction of enamines with $\mathrm{DBD}^{3}{ }^{3}$ Bis(phenylazo)stilbene undergoes facile cycloaddition with DBD to give 5,6-dibenzoyl-2,3a,4,6a-tetraphenyl-2,3a,4,6a-tetrahydro-1,2,3,4-tetraazapentalene. ${ }^{4}$ DBD reacts with propane-1,3-dithiol in the presence of triphenylphosphine to afford the mesocyclic dithioether trans-2,3-dibenzoyl-1,4-dithiacycloheptane diastereoselectively. ${ }^{5}$ Additionally, DBD reacts with enaminocarbonyl compounds to afford pyrrol-2-ol derivatives. ${ }^{6}$ 2-Aryl thiocarbamoyl benzimidazolium salts derived from benzimidazole and imidazoline carbenes undergo cycloaddition reactions with DBD to furnish spiro(imidazole-2,3'-thiophenes). ${ }^{7}$ Protonation of the highly reactive $1: 1$ intermediates produced in the reaction between alkyl isocyanides and DBD leads to vinylnitrilium cations, which undergo carbon-centred Michael type addition with the conjugate base of the NH -acid to produce highly functionalised aminofuran derivatives. ${ }^{8}$ It is reported that amidrazones condense only with dicarbonyl compounds to yield 1,2,4-triazines. ${ }^{9-11}$ The cyclocondensation reactions between amidrazones and ketoesters afford the corresponding triazinones. ${ }^{12}$ Various naphtho[2,3-f][1,2,4]triazepine-6,11diones have been obtained from the reaction of amidrazones with 1,4-dioxo-1,4-dihydronaphthalene-2,3-dicarbonitrile. ${ }^{13}$ Amidrazones were also involved in the reaction with 2-(1,3-dioxo-indan-2-ylidene)malononitrile to produce the corresponding 1,2,4-triazoles. ${ }^{14}$ Recently, we have investigated the reaction of 2,3-diphenylcyclopropenone with N -imidoylthioureas as amidine analogues. The reaction involves a stepwise addition and produces pyrimidin- $4(3 \mathrm{H})$-ones. ${ }^{15}$ Treatment of amidrazones with alkyl ketones under acidic catalysis leads generally to dihydro-1,2,4-triazoles. ${ }^{16}$ The reaction of DBD with N, N^{\prime}-substituted glyoxal-bisimines leads to the formation of pentasubstituted 1,2-dihydropyridines. ${ }^{17}$ Aly et al. obtained various benzo- and naphtha[1,2,4]triazin$6(4 \mathrm{H})$-ones $\mathbf{3 a}, \mathbf{b}$ from the reaction of amidrazones $\mathbf{1}$ with benzo- and naphtho-1,4-quinones 2a,b (Scheme 1). ${ }^{18}$ To the best of our knowledge, there is no literature report of the
reaction of amidrazones with π-deficient alkynes. In this paper, we report a new straightforward reaction of amidrazones with 1,4-diphenylbut-2-yne-1,4-dione.

Results and discussion

Amidrazones 1a-e reacted with 1,4-diphenylbut-2-yne-1,4dione (5) in absolute boiling ethanol, in $10-16 \mathrm{~h}$, to produce, after chromatographic purification and recrystallisation, compounds 6a-e in $70-94 \%$ yields (Scheme 2). We chose amidrazones 1a-e having aryl groups with either electrondonating or -withdrawing substitutents on the benzene ring, in order to examine their effect on the reaction. Elemental analyses and IR, NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and mass spectra were in good agreement with the assigned structures 6a-e (Scheme 2).

For example, the IR spectrum of $\mathbf{6 a}$ had two strong bands characteristic of the $\mathrm{C}=\mathrm{N}$ at $v=1610$ and 1600 , carbonyl at $v=1700-1690$, and an absorption band at $v=3210$ assigned to NH stretching. The elemental analysis and mass spectrum of $6 \mathbf{a}$ proved its molecular formula as $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a}$ showed the presence of $\mathrm{OCH}_{3}, \mathrm{CH}_{2}{ }^{-}$ benzoyl and NH-protons as three singlets at $\delta=3.74,4.76$, and 8.24 , respectively. The protons of the four aryl groups resonated as five multiplets at $\delta=8.14-8.09(2 \mathrm{H}), 7.58-7.52$ $(6 \mathrm{H}), 7.48-7.42(2 \mathrm{H}), 7.38-7.27(5 \mathrm{H}), 7.22-7.16(2 \mathrm{H})$, and in addition a doublet at $\delta=6.67(2 \mathrm{H}, J=8.0 \mathrm{~Hz})$. The ${ }^{13} \mathrm{C}$ NMR spectrum of 6 a revealed OCH_{3} and CH_{2}-benzoyl at $\delta=55.4$ and 37.4 , respectively. The two $C=N$ carbon signals appeared at $\delta=157.8$ and 160.4 , whereas the $\mathrm{CH}_{3} \mathrm{O}-\mathrm{Ph} C$ appeared at $\delta=156.8$ and the two carbonyl carbons resonated as two signals at $\delta=193.3$ and 196.1. The mass spectroscopy of $\mathbf{6 a}$ indicated a peak at $m / z=248(52 \%)$, whereas the molecular peak appeared at $m / z=475(22 \%)$ as shown in Fig. 1. The base peak appeared at $m / z=105$ corresponding to the PhCO^{+}fragment. In the case of $\mathbf{6 b}$, the mass spectrum and elemental analysis established its molecular formula as $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 b}$ showed seven multiplets for 20 aromatic protons at $\delta=8.12-8.06(2 \mathrm{H}), 8.04-$ $8.00(2 \mathrm{H}), 7.57-7.52(2 \mathrm{H}), 7.48-7.32(8 \mathrm{H}), 7.24-7.18(2 \mathrm{H})$, 7.16-7.12 (2H) and 7.04-6.92 (2H). The NH-proton absorbed clearly at $\delta=8.16$. The CH_{2}-benzoyl protons in $\mathbf{6 b}$ resonated at $\delta=4.70$, whereas the CH_{2}-benzoyl carbon appeared in

Scheme 1 Reaction of amidrazones 1 with benzo- and naphtho-1,4-quinones 2a,b.

[^0]

1, 6 and 7	Ar	Yield of 6 (\%)
a	$4-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-$	94
c	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5}^{-} \\ & 4-\mathrm{CH}_{3}-\mathrm{C}_{6}- \end{aligned}$	82
${ }_{\text {d }}$	$4-\mathrm{Cl}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	75
e	$3-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$	70

Scheme 2 Reaction of amidrazones 1a-e with DBD 5.

Fig. 1 Fragmentation patterns of mass spectroscopy for compounds $\mathbf{6 a}$ and $\mathbf{6 b}$.
the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta=37.4$. The two $C=N$ carbons resonated at $\delta=158.2$ and 159.8 , whereas the two carbonyl carbons resonated at $\delta=193.2$ and 196.0. The mass spectral fragmentation patterns of $\mathbf{6 a - e}$ (Fig. 1) are well in agreement with the assigned structures. Examples of the fragmentation patterns of compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ are shown in Fig. 1.

The reaction can be described as due to nucleophilic addition of amidine-like addition on the acetylenic carbon to form the intermediate 7 , followed by 1,3-hydrogen shift to give 6 (Scheme 2). It is well-known that the equilibrium between imine $\mathrm{N}=\mathrm{C}-\mathrm{CH}_{2}$ and enamine $\mathrm{NH}-\mathrm{C}=\mathrm{CH}$ can be shifted towards the enamine if the $\mathrm{C}=\mathrm{C}$ is conjugated, or better yet part of an aromatic system. However, it was shown that imine is more stable than its enamine tautomer during the reaction of acetylene with primary amines. ${ }^{19}$ In our case, it is reasonable that tautomerisation favours the imino form in the nitrogen system of 6a-e. That simply is related to the conjugation system present in compounds $\mathbf{6 a - e}$, whereas this conjugation is obviously absent in the case of the isomeric forms 7a-e. Since hydrazones have been demonstrated to possess, among other, antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular and antitumoral activities, ${ }^{20}$ we are aiming by this study to introduce prospective biological and/ or pharmaceutical compounds.

Experimental

All melting points were recorded on a Gallenkamp apparatus. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra (Bruker AM $400,{ }^{1} \mathrm{H}: 400.13 \mathrm{MHz},{ }^{13} \mathrm{C}$: 100.6 MHz). The NMR samples were dissolved in CDCl_{3} solutions. Coupling constants were expressed in Hz. Elemental analyses were carried at the Assiut Microanalysis Centre of Assiut University. Mass spectroscopy was performed with a Finnigan MAT 8430 spectrometer at 70 eV , Institute of Organic Chemistry, Technical-University

Braunschweig. IR spectra were run on a Shimadzu 470 spectrometer using KBr pellets.

Starting materials

Amidrazones 1a-e and 1,4-diphenylbutyne-2-yne-1,4-dione (5) were prepared according to references 21 and 22, respectively.

General procedure
A $250 \mathrm{~cm}^{3}$ two-necked round bottom flask containing a solution of 1a-e (1 mmol) and $\mathbf{5}(1 \mathrm{mmol})$ in absolute ethanol $(100 \mathrm{ml})$ was stirred at reflux for $10-16 \mathrm{~h}$ (the reaction was followed by TLC analysis). The solvent was then concentrated to its half volume and the precipitates were collected by filtration. The products $6 \mathbf{a}-\mathbf{e}$ were recrystallised from the stated solvents.
(2Z)-2-($\{(E)[4-M e t h o x y p h e n y l a m i n o] p h e n y l m e t h y l e n e\} ~ h y d r a z o n o)-~-~$ 1,4-diphenylbutan-1,4-dione (6a): Yellow crystals ($0.45 \mathrm{~g} .94 \%$); $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, m.p. $182^{\circ} \mathrm{C}$ (ethyl acetate). IR $(\mathrm{KBr}): v=3210(\mathrm{~m}$, NH), 3060-3010 (m, Ar-CH), 2990-2860 (m, aliph-CH), 1700-1690 (s, $\mathrm{C}=\mathrm{O}$), 1610, $1600(\mathrm{~s}, \mathrm{C}=\mathrm{N}), 1598(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} . \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\text {max }}(\log \varepsilon)=410(4.10) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=8.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 8.14-8.09 (m, 2H, ArH), 7.58-7.52 (m, 6H, ArH), 7.48-7.42 (m, 2H, ArH), 7.38-7.27 (m, 5H, ArH), 7.22-7.16 (m, 2H, ArH), 6.67 (d, $\left.2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{Ph}-\mathrm{H}\right), 4.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-benzoyl), 3.74 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=196.1,193.3(\mathrm{CO}), 160.4,157.8$ $(C=N), 156.8 .\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{Ph} C\right), 140.2(N-\mathrm{Ph} C), 138.6,138.2,136.2$ $(\mathrm{Ph} C), 128.6,128.0,127.8,127.6$ (Ar o-2CH), 127.4, 127.2, 127.0 ($\mathrm{Ar} m-2 \mathrm{CH}$), 126.8, 126.4, 126.2 ($\mathrm{Ar} p-\mathrm{CH}), 114.1\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{Ph} 2 \mathrm{CH}\right)$, $55.4\left(\mathrm{OCH}_{3}\right), 37.4\left(\mathrm{CH}_{2}\right.$-benzoyl). MS (EI, 70 eV$): m / z(\%)=475$ [M^{+}] (22), 398 (20), 370 (24), 367 (22), 248 (52), 227 (18), 211 (80), 122 (26), 118 (32), 105 (100), 91 (26), 77 (76). $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$ (475.55): Calcd. C, 75.77; H, 5.30; N, 8.84. Found: C, 75.70; H, 5.30; N, 8.74.
(2Z)-2-(\{(E\}[Phenylamino]phenylmethylene\}hydrazono)-1,4-diphenylbutan-1,4-dione (6b): Yellow crystals (0.36 g. 82\%); $R_{f}=0.5$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, m.p. $168^{\circ} \mathrm{C}$ (ethanol). - IR (KBr): $v=3212(\mathrm{~m}, \mathrm{NH}), 3080-$ 3010 (m, Ar-CH), 1706-1692 (s, C=O), 1612, 1604 (s, C=N), 1598 $(\mathrm{m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }(\log \varepsilon)=380(4.00) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.12-8.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.04-8.00$
(m, 2H, ArH), 7.57-7.52 (m, 2H, ArH), 7.48-7.32 (m, 8H, ArH), 7.24-7.18 (m, 2H, ArH), 7.16-7.12 (m, 2H, ArH), 7.04-6.92 (m, $2 \mathrm{H}, \mathrm{ArH}), 4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-benzoyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=196.0$, 193.2 (CO), 159.8, 158.2 (C=N), 140.0 (N-Ph C), 139.0, 138.8, 138.4 $(\mathrm{Ph} C), 128.6,128.4,128.0,127.8(\mathrm{Ar} o-2 C H), 127.6,127.2,127.0$, $126.8(\mathrm{Ar} m-2 C \mathrm{H}), 126.6,126.4,126.2,126.0(\mathrm{Ar} p-\mathrm{CH}), 37.4\left(\mathrm{CH}_{2}-\right.$ benzoyl). MS (EI, 70 eV): $m / z(\%)=445\left[\mathrm{M}^{+}\right](14), 248(66), 197$ (18), 180 (92), 118 (30), 91 (24), 105 (100), 77 (54). $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$ (445.53): Calcd. C, 78.18 ; H, 5.20; N, 9.43. Found: C, 78.04; H, 5.30; N, 9.40.
(2Z)-2-(\{(E\}[4-Methylphenylamino]phenylmethylene\}hydrazono)-1,4-diphenylbutan-1,4-dione (6c): Yellow crystals (0.40 g. 88\%); $R_{f}=0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, m.p. $196^{\circ} \mathrm{C}$ (methanol). IR $(\mathrm{KBr}): v=3210(\mathrm{~m}$, NH), 3065-3010 (m, Ar-CH), 2986-2870 (m, aliph-CH), 1708-1688 $(\mathrm{C}=\mathrm{O}), 1610,1600(\mathrm{~s}, \mathrm{C}=\mathrm{N}), 1594(\mathrm{~s}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} . \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }$ $(\log \varepsilon)=400(4.06) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.15-$ 8.06 (m, 2H, ArH), 7.60-7.50 (m, 4H, ArH), 7.40-7.25 (m, 7H, ArH), 7.22-7.10 (m, 4H, ArH), 7.04-6.92 (m, 2H, ArH), $4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{-}\right.$ benzoyl), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=196.2,193.0$ (CO), 160.2, $157.5(C=N), 140.0$ ($N-\mathrm{Ph} C$), 139.2, 138.2, 138.0, $137.6(\mathrm{Ph} C), 128.6,128.0,127.6,127.0(\mathrm{Ar} o-2 C \mathrm{H}), 126.8,126.6$, $126.4,126.2$ ($\mathrm{Ar} m-2 \mathrm{CH}$), 125.8, 125.4, 125.2 ($\mathrm{Ar} p-\mathrm{CH}$), $37.8\left(\mathrm{CH}_{2}-\right.$ benzoyl), $32.8\left(\mathrm{CH}_{3}\right)$. MS (EI, 70 eV$): m / z(\%)=459\left[\mathrm{M}^{+}\right](24), 248$ (60), 211 (24), 180 (80), 118 (34), 105 (100), 77 (50). $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$ (459.55): Calcd. C, 78.41 ; H, 5.48; N, 9.14. Found: C, 78.60; H, 5.40; N, 9.10.
(2Z)-2-(\{(E\}[4-Chlorophenylamino]phenylmethylene\}hydrazono)-1,4-diphenylbutan-1,4-dione (6d): Pale yellow crystals (0.36 g , $75 \%) ; R_{f}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, m.p. $172^{\circ} \mathrm{C}$ (ethanol). IR $(\mathrm{KBr}): v=3230$ (m, NH), 3060-3010 (m, Ar-CH), 1706-1690 (s, C=O), 1618, 1612 $(\mathrm{s}, \mathrm{C}=\mathrm{N}), 1598(\mathrm{~s}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} . \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\text {max }}(\log \varepsilon)=398$ (3.8). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.00-7.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.60-7.36 (m, 7H, ArH), 7.26-7.10 (m, 6H, ArH), 6.90-6.86 (m, 2H, $\mathrm{ArH}), 6.70(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 4.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-benzoyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=196.0,193.2(C O), 160.0,157.4(C=N), 140.0$ (N-Ph C), 138.0, 137.8, 137.5 (Ph C), 134.0 (Cl-Ph C), 128.0, 127.6, $127.2(\mathrm{Ar} o-2 \mathrm{CH}), 127.0,126.8,126.6,126.4(\mathrm{Ar} m-2 \mathrm{CH}), 125.8$, 125.6, 125.2 ($\mathrm{Ar} p-\mathrm{CH}$), 124.5 ($\mathrm{Cl}-\mathrm{Ph} 2 \mathrm{CH}), 37.6\left(\mathrm{CH}_{2}\right.$-benzoyl). MS (EI, 70 eV): $m / z(\%)=481[\mathrm{M}+2]$ (32), $479\left[\mathrm{M}^{+}\right](100), 477$ (26), 251 (54), 248 (56), 233 (22), 231 (20), 128 (23), 126 (26), 118 (38), 107 (72), 105 (76), 77 (36). $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2}$ (479.97): Calcd. C, 72.57; H, 4.62; Cl, 7.39; N, 8.75. Found: C, 72.40; H, 4.68; Cl, 7.35; N, 8.66.
(2Z)-2-(\{(E\}[3-Chlorophenylamino]phenylmethylene\} hydrazono)-1,4-diphenylbutan-1,4-dione (6e): Pale yellow crystals ($0.34 \mathrm{~g}, 70 \%$); $R_{f}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, m.p. $210-212^{\circ} \mathrm{C}$ (ethanol). IR (KBr): $v=3220$ (m, NH), 3060-3010 (m, Ar-CH), 1708-1686 (s, C=O), 1610, 1608 $(\mathrm{s}, \mathrm{C}=\mathrm{N}), 1598(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }(\log \varepsilon)=390$ (3.6). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.00-7.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$,
7.60-7.30 (m, 9H, ArH), 7.24-7.16 (m, 5H, ArH), 6.80-6.76 (m, 2H, $\mathrm{ArH}), 6.72$ (d, 1H, $J=1.3 \mathrm{~Hz}, \mathrm{ArH}$), 4.68 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$-benzoyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=196.2,194.0(\mathrm{CO}), 160.2,157.6(C=N), 140.4$ (N-Ph C), 138.2, 138.0, 137.8 (Ph C), 133.2 (Cl-Ph C), 128.0, 127.6, $127.4(\mathrm{Ar} o-2 \mathrm{CH}), 127.2,127.0,126.8,126.6(\mathrm{Ar} m-2 \mathrm{CH}), 126.0$, 125.8, 125.4 (Ar $p-\mathrm{CH}), 122.2(\mathrm{Cl}-\mathrm{Ph} o-2 \mathrm{CH}), 37.4\left(\mathrm{CH}_{2}\right.$-benzoyl). MS (EI, 70 eV): $m / z(\%)=481[\mathrm{M}+2](30), 479\left[\mathrm{M}^{+}\right](100), 477$ (28), 251 (56), 248 (60), 233 (24), 231 (24), 128 (14), 126 (18), 118 (40), 107 (75), 105 (78), 77 (32). $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2}$ (479.97): Calcd. C, 72.57 ; H, 4.62; Cl, 7.39; N, 8.75. Found: C, 72.50; H, 4.60; Cl, 7.30; N, 8.70.

Received 31 October 2007; accepted 7 December 2007

Paper 07/4926 doi: 10.3184/030823407X268340

References

1 L.V. Andriyankova, T.N. Komarova, A.S. Nakhmanovich, N.D. Abramova and G.G. Skvortsova, Zh. Org. Khim., 1985, 21, 2610.
2 A.A. Aly and M.A.-M. Gomaa, Can. J. Chem., 2005, 83, 57.
3 A. Alizadeh, F. Movahedi, M. Masrouri and L.-G. Zhu, Synthesis, 2006, 3431.

4 D. Ramaiah, N.P. Rath and M.V. George, Acta Crystallogr., 1998, 54C, 872.

5 I. Yavari, R. Amiri and M. Haghdadi, Croat. Chem. Acta, 2007, 80, 25.
6 I. Yavari, M. Anary-Abbasinejad, F. Nasiri, H. Djahaniani, A. Alizadeh and H.R. Bijanzadeh, Mol. Divers., 2005, 9, 209.
7 Y. Cheng, M.-F. Liu, D.-C. Fang and X.-M. Lei, Chem. Eur., J. 2007, 13, 4282.

8 I. Yavari, A. Alizadeh, M. Anary-Abbasinejad and H.R. Bijanzadeh, Tetrahedron, 2003, 59, 6083.
9 A. Pinner Justus Liebigs Ann. Chem., 1897, 297, 221.
10 H. Paul, S. Chatterjee and G. Hilgetag, Chem. Ber., 1968, 101, 3696.
11 A.R. Katritzky and A.F. Pozharski, Handbook of Heterocycl. Chemistry, 2nd edn.; Pergamon, Amsterdam, 2000; p. 596.
12 J.-H. Li and J.K. Snyder, J. Org. Chem., 1993, 58, 516.
13 A.A. Aly, A.M. Nour El-Din, M.A.-M. Gomaa and M.S. Fahmi Z. Naturforsch., 2008, 63b (in press).

14 A.A. Aly, M.A.-M. Gomaa, A.M Nour El-Din and M.S. Fahmi, Z. Naturforsch., 2006, 61b, 1239.

15 A.A. Aly, A.M. Nour El-Din, M.A.-M. Gomaa, A.B. Brown and M.S. Fahmi, J. Chem. Res., 2007, 439.

16 G. Drutkowski, C. Donner, I. Schulze and B. Frohberg, Tetrahedron, 2002, 58, 5317.
17 M.A.-M. Gomaa J. Chem. Res., 2004, 81.
18 A.A. Aly, M.A.-M. Gomaa, A.M. Nour El-Din and M.S. Fahmi, Arkivoc 2007, xvi, 41
9 C.W. Kruse and R.F. Kleinschmidt J. Am. Chem. Soc., 1961, 83, 213.
20 S. Rollas, N. Gülerman and H. Erdeniz, Farmaco, 2002, 57, 171.
21 D.G. Neilson, R. Roger, J.W.M. Heatle and L.R. Newlands, Chem. Rev., 1970, 70, 151.
22 J.J. Zhang and G.B. Schuster J. Am. Chem. Soc. 1989, 111, 7.

[^0]: * Correspondent. E-mail: ashrafaly63@yahoo.com

